4. 색인, 선택
페이지 정보
작성자 관리자 댓글 0건 조회 1,911회 작성일 20-01-22 21:26본문
4. 색인, 선택
삭제하기
실습1.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
obj = Series(np.arange(5), index=['a','b','c','d','e'])
print(obj)
obj2=obj.drop('c')
print(obj2)
obj3=obj.drop(['b', 'd', 'c'])
print(obj3)
[결과]
a 0
b 1
c 2
d 3
e 4
dtype: int32
a 0
b 1
d 3
e 4
dtype: int32
a 0
e 4
dtype: int32
axis는 축을 나타낸다. 0은 row, 1은 column을 나타낸다.
실습2.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
df = DataFrame(np.arange(16).reshape(4,4), index=['seoul', 'busan','daegu','incheon'], columns=['one', 'two', 'three', 'four'])
print(df)
new_df = df.drop(['seoul', 'busan'])
print(new_df)
new_df = df.drop('three', axis=1)
print(new_df)
new_df = df.drop(['two', 'four'], axis=1)
print(new_df)
[결과]
one two three four
seoul 0 1 2 3
busan 4 5 6 7
daegu 8 9 10 11
incheon 12 13 14 15
one two three four
daegu 8 9 10 11
incheon 12 13 14 15
one two four
seoul 0 1 3
busan 4 5 7
daegu 8 9 11
incheon 12 13 15
one three
seoul 0 2
busan 4 6
daegu 8 10
incheon 12 14
색인, 선택, 슬라이싱
실습3.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
obj = Series(np.arange(4.), index=['a','b','c','d'])
print(obj)
print(obj['b':'c'])
obj['b':'c'] = 10
print(obj)
[결과]
a 0.0
b 1.0
c 2.0
d 3.0
dtype: float64
b 1.0
c 2.0
dtype: float64
a 0.0
b 10.0
c 10.0
d 3.0
dtype: float64
실습4.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
data = DataFrame(np.arange(16).reshape(4,4),
index=['seoul', 'busan', 'kwangju', 'daegu'],
columns=['one', 'two', 'three', 'four'])
print(data)
print(data['two'])
print(data[['one', 'two']])
print(data[:2])
print(data[data['three'] > 7])
print(data < 5)
data[data<5] = 0
print(data)
[결과]
one two three four
seoul 0 1 2 3
busan 4 5 6 7
kwangju 8 9 10 11
daegu 12 13 14 15
seoul 1
busan 5
kwangju 9
daegu 13
Name: two, dtype: int32
one two
seoul 0 1
busan 4 5
kwangju 8 9
daegu 12 13
one two three four
seoul 0 1 2 3
busan 4 5 6 7
one two three four
kwangju 8 9 10 11
daegu 12 13 14 15
one two three four
seoul True True True True
busan True False False False
kwangju False False False False
daegu False False False False
one two three four
seoul 0 0 0 0
busan 0 5 6 7
kwangju 8 9 10 11
daegu 12 13 14 15
실습5.
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
data = DataFrame(np.arange(16).reshape(4,4),
index=['seoul', 'busan', 'kwangju', 'daegu'],
columns=['one', 'two', 'three', 'four'])
print(data)
# iloc / loc : DataFrame의 특수한 색인 필드(속성)
print(data.iloc[2])
print(data.iloc[2, 3])
print(data.loc['seoul'])
print(data.loc['busan', ['two', 'three']])
print(data.loc[['kwangju', 'daegu'], ['three', 'four']])
print(data.loc[['seoul', 'daegu'], ['three', 'one']])
print(data.loc[:'kwangju', 'three'])
[결과]
one two three four
seoul 0 1 2 3
busan 4 5 6 7
kwangju 8 9 10 11
daegu 12 13 14 15
one 8
two 9
three 10
four 11
Name: kwangju, dtype: int32
11
one 0
two 1
three 2
four 3
Name: seoul, dtype: int32
two 5
three 6
Name: busan, dtype: int32
three four
kwangju 10 11
daegu 14 15
three one
seoul 2 0
daegu 14 12
seoul 2
busan 6
kwangju 10
Name: three, dtype: int32
댓글목록
등록된 댓글이 없습니다.